Examen - Mécanique des milieux continus : partie théorique.

Aucun matériel autorisé, pas de calculatrice ni de feuille de brouillon. 45 min, 12 points $(\frac{1}{3}$ de l'examen écrit)

Notez vos réponses sur ce document (brouillon mis à disposition)

Exercice 1 : Simplifier (a, b, c), démontrer (d), ou invalider (e) les expressions suivantes (3 points)

- (a) $\epsilon_{ijk}\delta_{ij}$ où ϵ_{ijk} est le symbole de permutation
- (b) $\epsilon_{ijk} \epsilon_{jki}$
- (c) $\delta_{ii}A_{kl}$
- (d) Montrer que T: W = 0 si T est un tenseur symétrique et W est un tenseur antisymétrique.
- (e) Justifier pour quoi les expressions suivantes ne sont pas correctes : $C_{ijkl}\varepsilon_{kk}$

 $A \cdot B$, où A et B sont des tenseurs d'ordre 2 uv, où u et v sont des vecteurs.

Exercice 2: Accélération (2 points)

Dans une région les composantes du champ de vitesse sont :

$$- v_x = -A(x^3 + xy^2)e^{-kt}$$

$$- v_y = A(x^2y + y^3)e^{-kt}$$

$$-v_z=0$$

où A et k sont des constantes, x, y, z les coordonnées spatiales et t le temps. Calculer l'accélération d'une

particule qui est à la position $(1,1,0)$ au temps $t=0$.
Exercice 3: Tenseur des contraintes de Cauchy (2 points)
Ecrire (en matriciel ou indiciel) les équations d'équilibre ainsi que les conditions limites en traction que doit satisfaire le tenseur des contraintes de Cauchy, σ . Sans refaire la démonstration, dans les grandes lignes, comment avons-nous pu démontrer que σ est symétrique.

Exercice 4 : Energie potentielle (1 point)
Donner le principe du minimum en énergie potentielle.
Exercice 5 : Théorème de superposition (1 point)
Donner le théorème de superposition.
Exercice 6 : Formule des chaudronniers (1 point)
Donner la formule des chaudronniers.

Exercice 7: Pression hydrostatique (1 point)
En utilisant les équations d'équilibre, donner la pression hydrostatique en fonction de la profondeur dans un liquide au repos (vous pouvez négliger la pression atmosphérique).

Exercice 8 : Trace du tenseur des déformations infinitésimales (2 points)

Prouver que la trace de ε donne le changement de volume relatif.

Avec un cercle de Mohr, répondre à la question suivante : Dans un problème en déformations planes, si la trace de ε est nulle, peut-on dire que le cisaillement est nul?